Heterogeneity in a mouse model of histiocytosis: transformation of Langerin+ dendritic cells, macrophages, and precursors
Mouse histiocytosis sarcoma virus infection induces a heterogeneous disease with characteristics of Mφ/DC neoplasms involving Langerin+ DC, Mφ, and precursors. Neoplastic diseases of macrophages (Mφ) and dendritic cells (DC), collectively called histiocytoses, are relatively rare. The etiology of mo...
Gespeichert in:
Veröffentlicht in: | Journal of leukocyte biology 2010-05, Vol.87 (5), p.949-958 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mouse histiocytosis sarcoma virus infection induces a heterogeneous disease with characteristics of Mφ/DC neoplasms involving Langerin+ DC, Mφ, and precursors.
Neoplastic diseases of macrophages (Mφ) and dendritic cells (DC), collectively called histiocytoses, are relatively rare. The etiology of most forms of histiocytosis is poorly understood, and the development of animal models is crucial for further research in this field. Previously, an animal model for malignant histiocytosis (MH), involving transformed histiocytic cells, has been generated by infecting mice with malignant histiocytosis sarcoma virus (MHSV). However, increased insight into the heterogeneity of Mφ and DC, and the associated reappraisal of human proliferative diseases involving these cells inspired us to re‐evaluate the mouse model. We analyzed spleen, bone marrow, and lymph nodes of susceptible mice at various time points after infection. From day 11 onwards, a heterogeneous population of cells, consisting of CD8α+ Langerin+ DC, ER‐MP58+ CD11b+ myeloid precursor cells, CD169+ metallophilic Mφ, and CD71hi erythroblasts, was affected by viral transformation. In different mice, these subsets expanded at different rates in different organs, causing a variable disease profile in terminal stages. Cell lines, which were generated from MHSV‐transformed tumors, showed a DC‐like morphology and phenotype, and appeared to be arrested in different stages of maturation. Upon injection into healthy mice, different preferential homing patterns were observed for the various cell lines, and the cells acquired distinct phenotypes depending on the organ of homing. This indicates that these transformed cells adapt to their microenvironment by switching between precursor, DC/Langerhans cell, and Mφ phenotypes. Our results demonstrate that the MHSV model represents a heterogeneous neoplastic disease with characteristics of Mφ/DC sarcomas. |
---|---|
ISSN: | 0741-5400 1938-3673 |
DOI: | 10.1189/jlb.0609432 |