A comparison of computational color constancy algorithms. Part I: Methodology and experiments with synthesized data

We introduce a context for testing computational color constancy, specify our approach to the implementation of a number of the leading algorithms, and report the results of three experiments using synthesized data. Experiments using synthesized data are important because the ground truth is known,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2002-09, Vol.11 (9), p.972-984
Hauptverfasser: BARNARD, Kobus, CARDEI, Vlad, FUNT, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a context for testing computational color constancy, specify our approach to the implementation of a number of the leading algorithms, and report the results of three experiments using synthesized data. Experiments using synthesized data are important because the ground truth is known, possible confounds due to camera characterization and pre-processing are absent, and various factors affecting color constancy can be efficiently investigated because they can be manipulated individually and precisely. The algorithms chosen for close study include two gray world methods, a limiting case of a version of the Retinex method, a number of variants of Forsyth's gamut-mapping method, Cardei et al.'s neural net method, and Finlayson et al.'s color by correlation method. We investigate the ability of these algorithms to make estimates of three different color constancy quantities: the chromaticity of the scene illuminant, the overall magnitude of that illuminant, and a corrected, illumination invariant, image. We consider algorithm performance as a function of the number of surfaces in scenes generated from reflectance spectra, the relative effect on the algorithms of added specularities, and the effect of subsequent clipping of the data. All data is available on-line at http://www.cs.sfu.ca/(tilde)color/data, and implementations for most of the algorithms are also available (http://www.cs.sfu.ca/(tilde)color/code).
ISSN:1057-7149
DOI:10.1109/TIP.2002.802531