Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease

Prion diseases are fatal, chronic neurodegenerative diseases of mammals, characterized by amyloid deposition, astrogliosis, microglial activation, tissue vacuolation and neuronal loss. In the ME7 model of prion disease in the C57BL/6 J mouse, we have shown previously that these animals display behav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2003-05, Vol.17 (10), p.2147-2155
Hauptverfasser: Cunningham, C., Deacon, R., Wells, H., Boche, D., Waters, S., Diniz, C. Picanco, Scott, H., Rawlins, J. N. P., Perry, V. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prion diseases are fatal, chronic neurodegenerative diseases of mammals, characterized by amyloid deposition, astrogliosis, microglial activation, tissue vacuolation and neuronal loss. In the ME7 model of prion disease in the C57BL/6 J mouse, we have shown previously that these animals display behavioural changes that indicate the onset of neuronal dysfunction. The current study examines the neuropathological correlates of these early behavioural changes. After injection of ME7‐infected homogenate into the dorsal hippocampus, we found statistically significant impairment of burrowing, nesting and glucose consumption, and increased open field activity at 13 weeks. At this time, microglia activation and PrPSc deposition was visible selectively throughout the limbic system, including the hippocampus, entorhinal cortex, medial and lateral septum, mamillary bodies, dorsal thalamus and, to a lesser degree, in regions of the brainstem. No increase in apoptosis or neuronal cell loss was detectable at this time, while in animals at 19 weeks postinjection there was 40% neuronal loss from CA1. There was a statistically significant reduction in synaptophysin staining in the stratum radiatum of the CA1 at 13 weeks indicating loss of presynaptic terminals. Damage to the dorsal hippocampus is known to disrupt burrowing and nesting behaviour. We have demonstrated a neuropathological correlate of an early behavioural deficit in prion disease and suggest that this should allow insights into the first steps of the neuropathogenesis of prion diseases.
ISSN:0953-816X
1460-9568
DOI:10.1046/j.1460-9568.2003.02662.x