Contribution of genetic influences to animal-to-animal variation in myoglobin content and beef lean color stability
Longissimus thoracis steaks from steers (n = 464) with 0 to 50% inheritance of Angus, Charolais, Gelbvieh, Hereford, Limousin, Red Angus, and Simmental were evaluated during 6 d of display to assess genetic contributions to color stability. Color space values [CIE L* (lightness), a* (redness), b* (y...
Gespeichert in:
Veröffentlicht in: | Journal of animal science 2010-03, Vol.88 (3), p.1160-1167 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Longissimus thoracis steaks from steers (n = 464) with 0 to 50% inheritance of Angus, Charolais, Gelbvieh, Hereford, Limousin, Red Angus, and Simmental were evaluated during 6 d of display to assess genetic contributions to color stability. Color space values [CIE L* (lightness), a* (redness), b* (yellowness)], chroma, color change (ΔE), and surface metmyoglobin (K/S 572/525) were determined on d 0 and 6 of display. Myoglobin concentration was highly heritable (0.85), but ultimate pH was weakly heritable (0.06). Day 0 L* values were moderately heritable (0.24). Variation in metmyoglobin, L*, and ΔE on d 6 was moderately explained by genetic factors (41, 40, and 29%, respectively). Change during display was moderately heritable for a* (0.31), b* (0.23), chroma (0.35), and surface metmyoglobin (0.29). At the start of display, Angus steaks had greater (P < 0.05) L* values than those from all breeds except Charolais. On d 6, Angus steaks had greater (P < 0.05) L* (50.0) values than Gelbvieh, Hereford, and Simmental steaks (46.1, 44.0, and 44.5, respectively). Day 0 values for a*, b*, chroma, and ΔE were not affected by breed (P > 0.05). On d 6, a* values were greater (P < 0.05) for Charolais and Limousin steaks (31.1 and 30.5) than Angus, Hereford, and Red Angus steaks (27.4, 27.7, and 26.3, respectively). Thus, a* changed less (P < 0.05) in Charolais and Limousin steaks (1.8 and 2.6, respectively) vs. steaks from other breeds. Day 6 b* values were greater (P < 0.05) in Charolais (24.5) and Limousin steaks (24.0) vs. Gelbvieh (22.2), Hereford (21.9), and Red Angus steaks (21.4). Thus, b* values changed less (P < 0.05) in Charolais and Limousin steaks (1.5 and 1.7, respectively) than in Angus, Gelbvieh, Hereford, and Red Angus steaks (4.3, 3.8, 4.4, and 5.1, respectively). After 6 d of display, Charolais and Limousin steaks had greater chroma (P < 0.05; 39.5 and 38.8, respectively) compared with Angus, Hereford, and Red Angus steaks (35.4, 35.3, and 33.9, respectively). Less (P < 0.05) change in chroma occurred for Charolais and Limousin (2.1 and 2.8, respectively) than in Angus, Gelbvieh, Hereford, and Red Angus steaks (7.1, 6.6, 7.4, and 9.0, respectively). Myoglobin concentration was less for Charolais and Limousin (P < 0.05; 2.77 and 2.72, respectively) compared with Gelbvieh, Red Angus, and Simmental steaks (3.62, 3.43, and 3.71, respectively). Breeds did not differ in pH (P > 0.05). These data suggest Charolais- and Limousin-carcasses produced steaks with |
---|---|
ISSN: | 0021-8812 1525-3163 |
DOI: | 10.2527/jas.2009-2544 |