Time-resolved analysis of cavitation induced by CW lasers in absorbing liquids

We present novel results on thermocavitation using a CW medium-power near infrared laser (lambda=975 nm) focused into a saturated copper nitrate saline solution. Due to the large absorption coefficient at the laser wavelength, the solution can be heated to its superheat limit (T(sh) approximately 27...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2010-04, Vol.18 (9), p.8735-8742
Hauptverfasser: Ramirez-San-Juan, J C, Rodriguez-Aboytes, E, Martinez-Canton, A E, Baldovino-Pantaleon, O, Robledo-Martinez, A, Korneev, N, Ramos-Garcia, R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present novel results on thermocavitation using a CW medium-power near infrared laser (lambda=975 nm) focused into a saturated copper nitrate saline solution. Due to the large absorption coefficient at the laser wavelength, the solution can be heated to its superheat limit (T(sh) approximately 270-300 degrees C). Superheated water undergoes explosive phase transition around T(sh) producing approximately half-hemispheric bubbles (gamma approximately 0.5) in close contact with the substrate. We report the temporal dynamic of the cavitation bubble, which is much shorter than previously reported under similar conditions. It was found that the bubble radius and pressure wave amplitude emitted on bubble collapse decreases exponentially with the power laser. Thermocavitation can be a useful tool for the generation of ultrasonic waves and controlled ablation for use in high-resolution lithography.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.18.008735