Spectra of convolution operators on L spaces

Let 1 < p < infinity with p not equal 2. Let G denote the n-torus or Euclidean n-space, and let Gamma be the dual group of G. We show the existence of a multiplier transformation T on L(p)(G) which satisfies the following properties: (a) the transform T of T is smooth and vanishes at infinity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1975-09, Vol.72 (9), p.3285-3286
1. Verfasser: Zafran, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3286
container_issue 9
container_start_page 3285
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 72
creator Zafran, M
description Let 1 < p < infinity with p not equal 2. Let G denote the n-torus or Euclidean n-space, and let Gamma be the dual group of G. We show the existence of a multiplier transformation T on L(p)(G) which satisfies the following properties: (a) the transform T of T is smooth and vanishes at infinity on Gamma; (b) the spectrum of T on L(p) properly contains T(Gamma) union or logical sum{0}.
doi_str_mv 10.1073/pnas.72.9.3285
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733496438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733496438</sourcerecordid><originalsourceid>FETCH-LOGICAL-p123t-13e308c0f9b61564fd0f4d1e59fa26e5fe5794703bb8d4016ae5991484d278543</originalsourceid><addsrcrecordid>eNo1j0tLxDAUhbNQnHF061K6c2PrzTtZyuALCi7UdUnbG6i0TUxawX_vgOPq8HE-DhxCrihUFDS_i7PLlWaVrTgz8oRsAZgujWBiQ85z_gQAKw2ckQ1V0jKm5ZbcvkXsluSK4IsuzN9hXJchzEWImNwSUi4OUBc5ug7zBTn1bsx4ecwd-Xh8eN8_l_Xr08v-vi4jZXwpKUcOpgNvW0WlEr4HL3qK0nrHFEqPUluhgbet6QVQ5Q6VpcKInmkjBd-Rm7_dmMLXinlppiF3OI5uxrDmRnMurBLcHMzro7m2E_ZNTMPk0k_zf5D_AgSdTvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733496438</pqid></control><display><type>article</type><title>Spectra of convolution operators on L spaces</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zafran, M</creator><creatorcontrib>Zafran, M</creatorcontrib><description>Let 1 &lt; p &lt; infinity with p not equal 2. Let G denote the n-torus or Euclidean n-space, and let Gamma be the dual group of G. We show the existence of a multiplier transformation T on L(p)(G) which satisfies the following properties: (a) the transform T of T is smooth and vanishes at infinity on Gamma; (b) the spectrum of T on L(p) properly contains T(Gamma) union or logical sum{0}.</description><identifier>ISSN: 0027-8424</identifier><identifier>DOI: 10.1073/pnas.72.9.3285</identifier><identifier>PMID: 16592275</identifier><language>eng</language><publisher>United States</publisher><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1975-09, Vol.72 (9), p.3285-3286</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16592275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zafran, M</creatorcontrib><title>Spectra of convolution operators on L spaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Let 1 &lt; p &lt; infinity with p not equal 2. Let G denote the n-torus or Euclidean n-space, and let Gamma be the dual group of G. We show the existence of a multiplier transformation T on L(p)(G) which satisfies the following properties: (a) the transform T of T is smooth and vanishes at infinity on Gamma; (b) the spectrum of T on L(p) properly contains T(Gamma) union or logical sum{0}.</description><issn>0027-8424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNo1j0tLxDAUhbNQnHF061K6c2PrzTtZyuALCi7UdUnbG6i0TUxawX_vgOPq8HE-DhxCrihUFDS_i7PLlWaVrTgz8oRsAZgujWBiQ85z_gQAKw2ckQ1V0jKm5ZbcvkXsluSK4IsuzN9hXJchzEWImNwSUi4OUBc5ug7zBTn1bsx4ecwd-Xh8eN8_l_Xr08v-vi4jZXwpKUcOpgNvW0WlEr4HL3qK0nrHFEqPUluhgbet6QVQ5Q6VpcKInmkjBd-Rm7_dmMLXinlppiF3OI5uxrDmRnMurBLcHMzro7m2E_ZNTMPk0k_zf5D_AgSdTvU</recordid><startdate>197509</startdate><enddate>197509</enddate><creator>Zafran, M</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>197509</creationdate><title>Spectra of convolution operators on L spaces</title><author>Zafran, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p123t-13e308c0f9b61564fd0f4d1e59fa26e5fe5794703bb8d4016ae5991484d278543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafran, M</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafran, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectra of convolution operators on L spaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1975-09</date><risdate>1975</risdate><volume>72</volume><issue>9</issue><spage>3285</spage><epage>3286</epage><pages>3285-3286</pages><issn>0027-8424</issn><abstract>Let 1 &lt; p &lt; infinity with p not equal 2. Let G denote the n-torus or Euclidean n-space, and let Gamma be the dual group of G. We show the existence of a multiplier transformation T on L(p)(G) which satisfies the following properties: (a) the transform T of T is smooth and vanishes at infinity on Gamma; (b) the spectrum of T on L(p) properly contains T(Gamma) union or logical sum{0}.</abstract><cop>United States</cop><pmid>16592275</pmid><doi>10.1073/pnas.72.9.3285</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1975-09, Vol.72 (9), p.3285-3286
issn 0027-8424
language eng
recordid cdi_proquest_miscellaneous_733496438
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
title Spectra of convolution operators on L spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectra%20of%20convolution%20operators%20on%20L%20spaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zafran,%20M&rft.date=1975-09&rft.volume=72&rft.issue=9&rft.spage=3285&rft.epage=3286&rft.pages=3285-3286&rft.issn=0027-8424&rft_id=info:doi/10.1073/pnas.72.9.3285&rft_dat=%3Cproquest_pubme%3E733496438%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733496438&rft_id=info:pmid/16592275&rfr_iscdi=true