Spectra of convolution operators on L spaces
Let 1 < p < infinity with p not equal 2. Let G denote the n-torus or Euclidean n-space, and let Gamma be the dual group of G. We show the existence of a multiplier transformation T on L(p)(G) which satisfies the following properties: (a) the transform T of T is smooth and vanishes at infinity...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1975-09, Vol.72 (9), p.3285-3286 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let 1 < p < infinity with p not equal 2. Let G denote the n-torus or Euclidean n-space, and let Gamma be the dual group of G. We show the existence of a multiplier transformation T on L(p)(G) which satisfies the following properties: (a) the transform T of T is smooth and vanishes at infinity on Gamma; (b) the spectrum of T on L(p) properly contains T(Gamma) union or logical sum{0}. |
---|---|
ISSN: | 0027-8424 |
DOI: | 10.1073/pnas.72.9.3285 |