Calcium transport by corn mitochondria: evaluation of the role of phosphate
Mitochondria from some plant tissues possess the ability to take up Ca2+ by a phosphate-dependent mechanism associated with a decrease in membrane potential, H+ extrusion, and increase in the rate of respiration (AE Vercesi, L Pereira da Silva, IS Martins, CF Bernardes, EGS Carnieri, MM Fagian [1989...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1992-02, Vol.98 (2), p.452-457 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mitochondria from some plant tissues possess the ability to take up Ca2+ by a phosphate-dependent mechanism associated with a decrease in membrane potential, H+ extrusion, and increase in the rate of respiration (AE Vercesi, L Pereira da Silva, IS Martins, CF Bernardes, EGS Carnieri, MM Fagian [1989] In G Fiskum, ed, Cell Calcium Metabolism. Plenum Press, New York, pp 103-111). The present study reexamined the nature of the phosphate requirement in this process. The main observations are: (a) Respiration-coupled Ca2+ uptake by isolated corn (Zea mays var Maya Normal) mitochondria or carbonyl cyanide p-trifluoromethoxyphenylhydrazone-induced efflux of the cation from such mitochondria are sensitive to mersalyl and cannot be dissociated from the silmultaneous movement of phosphate in the same direction. (b) Ruthenium red-induced efflux is not affected by mersalyl and can occur in the absence of phosphate movement. (c) In Ca2+-loaded corn mitochondria, mersalyl causes net Ca2+ release unrelated to a decrease in membrane potential, probably due to an inhibition of Ca2+ cycling at the level of the influx pathway. It is concluded that corn mitochondria (and probably other plant mitochondria) do possess an electrophoretic influx pathway that appears to be a mersalyl-sensitive Ca2+/inorganic phosphate-symporter and a phosphate-independent efflux pathway possibly similar to the Na2+-independent Ca2+ efflux mechanism of vertebrate mitochondria, because it is not stimulated by Na+ |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.98.2.452 |