Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity
Young bell pepper (Capsicum annuum L.) plants grown in nutrient solution were gradually acclimated to 50, 100, or 150 moles per cubic meter NaCl, and photosynthetic rates of individual attached leaves were measured on several occasions during the salinization period at external CO2 concentrations ra...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1992-05, Vol.99 (1), p.219-226 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Young bell pepper (Capsicum annuum L.) plants grown in nutrient solution were gradually acclimated to 50, 100, or 150 moles per cubic meter NaCl, and photosynthetic rates of individual attached leaves were measured on several occasions during the salinization period at external CO2 concentrations ranging from approximately 70 to 1900 micromoles per mole air. Net CO2 assimilation (A) was plotted against computed leaf internal concentration (Ci), and the initial slope of this A-Ci curve was used as a measure of photosynthetic ability. During the 10 to 14 days after salinization began, leaves from plants exposed to 50 moles per cubic meter NaCl showed little change in photosynthetic ability, whereas those treated to 100 or 150 moles per cubic meter NaCl had up to 85% inhibition, with increase in CO2 compensation point. Leaves appeared healthy, and leaf chlorophyll content showed only a 14% reduction at the highest salinity levels. Partial stomatal closure occurred with salinization, but reductions in photosynthesis were primarily nonstometal in origin. Photosynthetic ability was inversely related to the concentration of either Na+ or Cl(-) in the leaf laminas sampled at the end of the experimental period. However, the concentration of Cl(-) expressed on a tissue water basis was greater, exceeding 300 moles per cubic meter, and Cl was more closely associated (R2 = 0.926) with the inhibition of photosynthetic ability. Leaf turgor was not reduced by salinization and leaf osmotic potential decreased to a slightly greater extent than the osmotic potential decreases of the nutrient solutions. Concentration of accumulated Na+ and Cl(-) (on a tissue water basis) accounted quantitatively for maintenance of leaf osmotic balance, assuming that these ions were sequestered in the vacuoles |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.99.1.219 |