Gibberellic acid regulates chalcone synthase gene transcription in the corolla of Petunia hybrida

The pigmentation of Petunia hybrida corollas is regulated by gibberellic acid (GA3). It controls the increase of flavonoid enzyme levels and their corresponding mRNAs. We have used an in vitro culture system for corollas to study the regulatory role of GA3 in the expression of flavonoid genes. By de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1992-01, Vol.98 (1), p.191-197
Hauptverfasser: Weiss, D. (Vrije Universiteit, Amsterdam, Netherlands), Blokland, R. van, Kooter, J.M, Mol, J.N.M, Tunen, A.J. van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pigmentation of Petunia hybrida corollas is regulated by gibberellic acid (GA3). It controls the increase of flavonoid enzyme levels and their corresponding mRNAs. We have used an in vitro culture system for corollas to study the regulatory role of GA3 in the expression of flavonoid genes. By determining steady-state mRNA levels, we show that the accumulation of chalcone synthase (chs) mRNA in young corollas is dependent on the presence of both sucrose and GA3 in the culture medium. Whereas sucrose had a general metabolic effect on gene expression, the stimulatory role of GA3 was specific. Analysis of nascent transcripts in isolated corolla nuclei showed that changes in steady-state chs mRNA levels correlated very well with changes in the transcription rate. We therefore conclude that GA3 controls the expression of chs at the transcriptional level. Preculturing the corollas in sucrose medium without GA3 resulted in a lower chs mRNA level. The expression could be reinduced by the addition of GA3. The hormone is thus required for the induction but also for the maintenance of chs transcription. The delayed reinduction of chs expression, the lag time in the kinetics of chs mRNA accumulation, and the inhibitory effect of cycloheximide on the action of GA3 suggest that GA3 controls chs transcription in an indirect manner. Our data support a model in which GA3 induces the production of a regulatory protein such as a receptor or a transacting factor that is directly involved in chs transcription
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.98.1.191