Seed dormancy in red rice. VII. Structure-activity studies of germination stimulants

Many chemically dissimilar substances break dormancy of seeds, but the relationship between chemical structure and physiological activity is unknown. In this study, the concentrations of organic acids, esters, aldehydes, alcohols, and inorganic weak acids required to elicit 50% germination of initia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1989-03, Vol.89 (3), p.879-882
Hauptverfasser: Cohn, M.A, Jones, K.L, Chiles, L.A, Church, D.F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many chemically dissimilar substances break dormancy of seeds, but the relationship between chemical structure and physiological activity is unknown. In this study, the concentrations of organic acids, esters, aldehydes, alcohols, and inorganic weak acids required to elicit 50% germination of initially dormant, dehulled red rice seeds (Oryza sativa) were determined. The activity of most substances was very highly and inversely correlated to lipophilicity as measured by octanol/water partition coefficients; chemicals with the highest partition coefficients required the lowest concentrations to elicit the germination response. Relative efficacy was also dependent upon the functional group; generally, monocarboxylic acids were more effective than aldehydes, esters, hydroxyacids, and alcohols. Relative hydrophobicity plots supported a modulating role of the functional group. Dormancy-breaking activity of methyl formate, formic acid, nitrite, azide, and cyanide was higher than predicted based on lipophilicity and apparently was related to molecular size; compounds with smaller molecular widths were required at lower concentrations to achieve the 50% germination response
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.89.3.879