Modification of the red beet plasma membrane H+ -ATPase by diethylpyrocarbonate
Incubation of the red beet (Beta vulgaris L.) plasma membrane H+-ATPase with micromolar concentrations of diethylpyrocarbonate (DEPC) resulted in inhibition of both ATP hydrolytic and proton pumping activity. Enzyme activity was restored when DEPC-modified protein was incubated with hydroxylamine, s...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1990-10, Vol.94 (2), p.696-703 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Incubation of the red beet (Beta vulgaris L.) plasma membrane H+-ATPase with micromolar concentrations of diethylpyrocarbonate (DEPC) resulted in inhibition of both ATP hydrolytic and proton pumping activity. Enzyme activity was restored when DEPC-modified protein was incubated with hydroxylamine, suggesting specific modification of histidine residues. Kinetic analyses of DEPC inhibition performed on both membrane-bound and solubilized enzyme preparations suggested the presence of at least one essential histidine moiety per active site. Inclusion of either ATP (substrate) or ADP (product and competitive inhibitor) in the modification medium reduced the amount of inhibition observed in the presence of DEPC. However, protection was not entirely effective in returning activity to noninhibited control values. These results suggest that the modified histidine does not reside directly in the ATP binding region of the enzyme, but is more likely involved in enzyme regulation through subtle conformational effects |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.94.2.696 |