Purification and characterization of pea epicotyl beta-amylase

The most abundant beta-amylase (EC 3.2.1.2) in pea (Pisum sativum L.) was purified greater than 880-fold from epicotyls of etiolated germinating seedlings by anion exchange and gel filtration chromatography, glycogen precipitation, and preparative electrophoresis. The electrophoretic mobility and re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1990-03, Vol.92 (3), p.615-621
Hauptverfasser: Lizotte, P.A. (USDA Citrus and Subtropical Products Laboratory, Winter Haven, FL), Henson, C.A, Duke, S.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The most abundant beta-amylase (EC 3.2.1.2) in pea (Pisum sativum L.) was purified greater than 880-fold from epicotyls of etiolated germinating seedlings by anion exchange and gel filtration chromatography, glycogen precipitation, and preparative electrophoresis. The electrophoretic mobility and relative abundance of this beta-amylase are the same as that of an exoamylase previously reported to be primarily vacuolar. The enzyme was determined to be beta-amylase by end product analysis and by its inability to hydrolyze beta-limit dextrin and to release dye from starch azure. Pea beta-amylase is an approximate 55 to 57 kilodalton monomer with a pl of 4.35, a pH optimum of 6.0 (soluble starch substrate), an Arrhenius energy of activation of 6.28 kilocalories per mole, and a Km of 1.67 milligrams per milliliter (soluble starch). The enzyme is strongly inhibited by heavy metals, p-chloromercuriphenylsulfonic acid and N-ethylmaleimide, but much less strongly by iodoacetamide and iodoacetic acid, indicating cysteinyl sulfhydryls are not directly involved in catalysis. Pea beta-amylase is competitively inhibited by its end product, maltose, with a Kl of 11.5 millimolar. The enzyme is partially inhibited by Schardinger maltodextrins, with alpha-cyclohexaamylose being a stronger inhibitor than beta-cycloheptaamylose. Moderately branched glucans (e.g. amylopectin) were better substrates for pea beta-amylase than less branched or non-branched (amyloses) or highly branched (glycogens) glucans. The enzyme failed to hydrolyze native starch grains from pea and glucans smaller than maltotetraose. The mechanism of pea beta-amylase is the multichain type. Possible roles of pea beta-amylase in cellular glucan metabolism are discussed
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.92.3.615