Acetaldehyde and ethanol biosynthesis in leaves of plants

Leaves of terrestrial plants are aerobic organs, and are not usually considered to possess the enzymes necessary for biosynthesis of ethanol, a product of anaerobic fermentation. We examined the ability of leaves of a number of plant species to produce acetaldehyde and ethanol anaerobically, by incu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1987-08, Vol.84 (4), p.1204-1209
Hauptverfasser: Kimmerer, T.W, MacDonald, R.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leaves of terrestrial plants are aerobic organs, and are not usually considered to possess the enzymes necessary for biosynthesis of ethanol, a product of anaerobic fermentation. We examined the ability of leaves of a number of plant species to produce acetaldehyde and ethanol anaerobically, by incubating detached leaves in N2 and measuring headspace acetaldehyde and ethanol vapors. Greenhouse-grown maize and soybean leaves produced little or no acetaldehyde or ethanol, while leaves of several species of greenhouse-grown woody plants produced up to 241 nanograms per milliliter headspace ethanol in 24 hours, corresponding to a liquid-phase concentration of up to 3 milligrams per gram dry weight. When leaves of 50 plant species were collected in the field and incubated in N2, all higher plants produced acetaldehyde and ethanol, with woody plants generally producing greater amounts (up to 1 microgram per milliliter headspace ethanol concentration). Maize and soybean leaves from the field produced both acetaldehyde and ethanol. Production of fermentation products was not due to phylloplane microbial activity: surface sterilized leaves produced as much acetaldehyde and ethanol as did unsterilized controls. There was no relationship between site flooding and foliar ethanol biosynthesis: silver maple and cottonwood from upland sites produced as much acetaldehyde and ethanol anaerobically as did plants from flooded bottomland sites. There was no relationship between flood tolerance of a species and ethanol biosynthesis rates: for example, the flood intolerant species Quercus rubra and the flood tolerant species Quercus palustris produced similar amounts of ethanol. Cottonwood leaves produced more ethanol than did roots, in both headspace and enzymatic assays. These results suggest a paradox: that the plant organ least likely to be exposed to anoxia or hypoxia is rich in the enzymes necessary for fermentation.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.84.4.1204