Experimental Determination of the Respiration Associated with Soybean/Rhizobium Nitrogenase Function, Nodule Maintenance, and Total Nodule Nitrogen Fixation
The total metabolic cost of soybean (Glycine max L. Mer Clark) nodule nitrogen fixation was empirically separated into respiration associated with electron flow through nitrogenase and respiration associated with maintenance of nodule function. Rates of CO2 evolution and H2 evolution from intact, no...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1984-05, Vol.75 (1), p.49-53 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The total metabolic cost of soybean (Glycine max L. Mer Clark) nodule nitrogen fixation was empirically separated into respiration associated with electron flow through nitrogenase and respiration associated with maintenance of nodule function. Rates of CO2 evolution and H2 evolution from intact, nodulated root systems under Ar:O2 atmospheres decreased in parallel when plants were maintained in an extended dark period. While H2 evolution approached zero after 36 hours of darkness at 22°C, CO2 evolution rate remained at 38° of the rate measured in light. Of the remaining CO2 evolution, 62% was estimated to originate from the nodules and represents a measure of nodule maintenance respiration. The nodule maintenance requirement was temperature dependent and was estimated at 79 and 137 micromoles CO2 (per gram dry weight nodule) per hour at 22°C and 30°C, respectively. The cost of N2 fixation in terms of CO2 evolved per electron pair utilized by nitrogenase was estimated from the slope of H2 evolution rate versus CO2 evolution rate. The cost was 2 moles CO2 evolved per mole H2 evolved and was independent of temperature. In this symbiosis, nodule maintenance consumed 22% of total respiratory energy while the functioning of nitrogenase consumed a further 52%. The remaining respiratory energy was calculated to be associated with ammonia assimilation, transport of reduced N, and H2 evolution. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.75.1.49 |