Effect of BASF 13-338, a substituted pyridazinone, on lipid metabolism in leaf tissue of spinach, pea, linseed, and wheat [Spinacia oleracea, Pisum sativum, Linum usitatissimum, Triticum aestivum]
A substituted pyridazinone (BASF 13-338) inhibited photosynthesis in spinach (Spinacia oleracea, Hybrid 102 Arthur Yates Ltd.) leaf discs and reduced the incorporation of [1-14C]acetate into trienoic acids of diacylgalactosylglycerol while causing radioactivity to accumulate in diacylgalactosylglyce...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1982-07, Vol.70 (1), p.78-81 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A substituted pyridazinone (BASF 13-338) inhibited photosynthesis in spinach (Spinacia oleracea, Hybrid 102 Arthur Yates Ltd.) leaf discs and reduced the incorporation of [1-14C]acetate into trienoic acids of diacylgalactosylglycerol while causing radioactivity to accumulate in diacylgalactosylglycerol dienoic acids. Although BASF 13-338 inhibited photosynthesis in isolated spinach chloroplasts, it did not prevent dienoate desaturation. In discs, the labeling of fatty acids was affected by the inhibitor only in diacylgalactosylglycerol. Very little radioactivity was incorporated into trienes of phosphatidylcholine and the proportion of the label recovered in the fatty acids of phosphatidylcholine was not changed by BASF 13-338. The herbicides caused an increase in the proportion of the lipid 14C incorporated into diacylgalactosylglycerol and a decrease in labeling of phosphatidylcholine, whereas the proportion of 14C recovered in other lipids remained unchanged. Similar results were obtained with pea (Pisum sativum cv. Victory Freeze), linseed (Linum usitatissimum cv. Punjab), and wheat (Triticum aestivum cv. Karamu). With these species, a greater proportion of the label was incorporated into phosphatidylcholine and less into diacylgalactosylglycerol than with spinach. The data indicate that trienoate synthesis uses diacylgalactosylglycerol as substrate. BASF 13-338 appears to act at that step, and seems to cause in spinach a shift in polyenoate synthesis from the pathway involving microsomal phosphatidylcholine to the pathway operating inside the chloroplast. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.70.1.78 |