Metabolism of 2,4-Dichlorophenoxyacetic Acid in Soybean Root Callus and Differentiated Soybean Root Cultures as a Function of Concentration and Tissue Age
The metabolism of [1-14C]2,4-dichlorophenoxyacetic acid (2,4-D) in soybean (Glycine max [L.] Merrill var. Amsoy) root callus and in differentiated soybean root cultures was investigated as a function of pesticide concentration and age of tissue. The chronological age of the tissue was found to be co...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1978-07, Vol.62 (1), p.80-83 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The metabolism of [1-14C]2,4-dichlorophenoxyacetic acid (2,4-D) in soybean (Glycine max [L.] Merrill var. Amsoy) root callus and in differentiated soybean root cultures was investigated as a function of pesticide concentration and age of tissue. The chronological age of the tissue was found to be correlated with the mitotic index which reached a peak at 2 weeks and then declined. The metabolism of 2,4-D changed with age of the root callus tissue. The amount of free 2,4-D found in 3-week-old root callus tissue rapidly increased as the concentration of 2,4-D in the medium was increased from 10-6 to 10-5 molar, whereas the low level of aqueous (glycosides) and ether soluble metabolites (2,4-D amino acid conjugates) increased slowly. With 9-week-old root callus tissue, the amount of free 2,4-D remained at a relatively low, constant level (saturation level) as the concentration of 2,4-D in the medium increased. Under these conditions the aqueous metabolites increased only slightly but the ether fraction (2,4-D amino acid conjugates) rapidly increased. Thus, the older root callus tissue appeared to regulate the level of free 2,4-D at about 4 nanomoles per gram by converting any excess 2,4-D into amino acid conjugates. In 3-week-old, differentiated root cultures the metabolism of 2,4-D closely paralleled the metabolism found in the older 9-week-old callus tissue. The saturation level of free 2,4-D found in this tissue was only about 1 to 2 nanomoles per gram. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.62.1.80 |