Glial and neuronal regulation of the lipid carrier R-FABP
Neuroembryogenesis critically depends on signaling molecules that modulate cell proliferation, differentiation, and the formation of neural networks. In an attempt to identify potential morphogenetic active components that are distributed in a graded fashion in the developing nervous system, we gene...
Gespeichert in:
Veröffentlicht in: | Experimental cell research 2003-07, Vol.287 (1), p.88-97 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuroembryogenesis critically depends on signaling molecules that modulate cell proliferation, differentiation, and the formation of neural networks. In an attempt to identify potential morphogenetic active components that are distributed in a graded fashion in the developing nervous system, we generated substraction libraries of the embryonic nasal and temporal chick retina. Selected clones were analyzed by sequencing, Northern and Western blotting, in situ hybridization, and immunocytochemistry. Retinal fatty acid-binding protein (R-FABP) mRNA displayed the most pronounced topographic gradient. R-FABP was most strongly expressed in nasal retina, though topographic differences were not evident on the protein level. R-FABP expression was subject to a pronounced spatio-temporal regulation. Peak expression was at the period of cell generation/migration and differentiation. To identify the cell types involved in R-FAPB synthesis, ganglion cells as the only retinal projection neurons were enriched by
enzymatic delayering. Cell somata, axons, and growth cones were R-FABP immunoreactive. Most interestingly, R-FABP immunoreactivity was critically dependent on the growth substratum. It was abrogated when axons grew on isolated glial endfeet. Radial glia purified by complement-mediated cytolysis also expressed R-FABP at moderate levels. The expression level was significantly increased during mitosis and dropped down again in postmitotic cells. Further on, transient loss of cell-cell and substratum contact induced a subcellular redistribution of R-FABP. In conjunction with the morphogen-binding activity of other FABP family members and their impact on cell migration and tissue differentiation, R-FABP characteristics suggest a regulatory function during retinal histogenesis but not during topographic map formation. |
---|---|
ISSN: | 0014-4827 1090-2422 |
DOI: | 10.1016/S0014-4827(03)00109-5 |