Mitotic arrest and JNK-induced proteasomal degradation of FLIP and Mcl-1 are key events in the sensitization of breast tumor cells to TRAIL by antimicrotubule agents

Breast tumor cells are often resistant to tumor necrosis factor-related apoptosis-inducing ligand (tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)/APO-2 L). Here, we describe the sensitization by microtubule-interfering agents (MIAs) to TRAIL-induced apoptosis in breast tumor cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2010-05, Vol.17 (5), p.883-894
Hauptverfasser: Sánchez-Pérez, T, Ortiz-Ferrón, G, López-Rivas, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Breast tumor cells are often resistant to tumor necrosis factor-related apoptosis-inducing ligand (tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)/APO-2 L). Here, we describe the sensitization by microtubule-interfering agents (MIAs) to TRAIL-induced apoptosis in breast tumor cells through a mitotic arrest and c-Jun N-terminal kinase (JNK)-dependent mechanism. MIA treatment resulted in BubR1-dependent mitotic arrest leading to the sustained activation of JNK and the proteasome-mediated downregulation of cellular FLICE-inhibitory protein (cFLIP) and myeloid cell leukemia-1 (Mcl-1) expression. The JNK inhibitor SP600125 abrogated MIA-induced mitotic arrest and downregulation of cFLIP and Mcl-1 and reduced the apoptosis caused by the combination of MIAs and TRAIL. Silencing of cFLIP and Mcl-1 expression by RNA interference resulted in a marked sensitization to TRAIL-induced apoptosis. Furthermore, in FLIP-overexpressing cells, MIA-induced sensitization to TRAIL-activated apoptosis was markedly reduced. In summary, our results show that mitotic arrest imposed by MIAs activates JNK and facilitates TRAIL-induced activation of an apoptotic pathway in breast tumor cells by promoting the proteasome-mediated degradation of cFLIP and Mcl-1.
ISSN:1350-9047
1476-5403
DOI:10.1038/cdd.2009.176