Infrared light induced patterning of proteins on ppNIPAM thermoresponsive thin films: a "protein laser printer"
Protein micropatterns have applications in fundamental life sciences and clinical medicine. In this work, we present a new technique to create 2-D protein micropatterns by local activation of a thin film of thermoresponsive plasma-deposited poly(N-isopropylacrylamide) (ppNIPAM) using a computer-cont...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2010-01, Vol.10 (8), p.1079-1085 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein micropatterns have applications in fundamental life sciences and clinical medicine. In this work, we present a new technique to create 2-D protein micropatterns by local activation of a thin film of thermoresponsive plasma-deposited poly(N-isopropylacrylamide) (ppNIPAM) using a computer-controlled infrared laser beam. While the whole substrate is exposed to the protein solution, protein deposition happens only at laser-activated locations. A few seconds of laser exposure is all that is required to form a pattern with resolution in the single micrometre range. Successful ligand binding after protein deposition indicates that protein function remains intact after laser-induced adsorption onto ppNIPAM. This rapid, simple technique advances currently available strategies for protein patterning by its potential to pattern proteins in an enclosed environment or onto a 3-D scaffold. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/b920883f |