Application of Metabolomics to Investigate the Process of Human Orthotopic Liver Transplantation: A Proof-of-Principle Study
To improve the outcome of orthotopic liver transplantation (OLT), knowledge of early molecular events occurring upon ischemia/reperfusion is essential. Powerful approaches for profiling metabolic changes in tissues and biofluids are now available. Our objective was to investigate the applicability o...
Gespeichert in:
Veröffentlicht in: | Omics (Larchmont, N.Y.) N.Y.), 2010-04, Vol.14 (2), p.143-150 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To improve the outcome of orthotopic liver transplantation (OLT), knowledge of early molecular events occurring upon ischemia/reperfusion is essential. Powerful approaches for profiling metabolic changes in tissues and biofluids are now available. Our objective was to investigate the applicability of two technologies to a small but well-defined cohort of patients undergoing OLT: consecutive liver biopsies by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and microdialysates of extracellular fluid by coulometric electrochemical array detection (CEAD). FT-ICR MS detected reproducibly more than 4,000 peaks, revealing hundreds of significant metabolic differences between pre- and postreperfusion grafts. These included increased urea production, bile acid synthesis and clearance of preservation solution upon reperfusion, indicating a rapid resumption of biochemical function within the graft. FT-ICR MS also identified successfully the only graft obtained by donation-after-cardiac-death as a “metabolic outlier.” CEAD time–profile analysis showed that there was considerable change in redox-active metabolites (up to 18 h postreperfusion), followed by their stabilization. Collectively these results verify the applicability of FT-ICR MS and CEAD for characterizing multiple metabolic pathways during OLT. The success of this proof-of-principle application of these technologies to a clinical setting, considering the potential metabolic heterogeneity across only eight donor livers, is encouraging. |
---|---|
ISSN: | 1536-2310 1557-8100 |
DOI: | 10.1089/omi.2009.0139 |