A New Class of Surfactants with Multinuclear, Inorganic Head Groups

The main ability of amphiphilic molecules is to alter the energy of interfaces. They aid in the formation of various materials characterized by a high surface to volume ratio. Furthermore, amphiphiles tend to self-organize into structures of higher complexity. In the current study anionic surfactant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2010-04, Vol.132 (14), p.5315-5321
Hauptverfasser: Landsmann, Steve, Lizandara-Pueyo, Carlos, Polarz, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main ability of amphiphilic molecules is to alter the energy of interfaces. They aid in the formation of various materials characterized by a high surface to volume ratio. Furthermore, amphiphiles tend to self-organize into structures of higher complexity. In the current study anionic surfactants containing a purely inorganic multinuclear head group of the polytungstate type R-[PW11O39]3− were synthesized. Alkyl chains of different length were attached to the head group via siloxy bridges. Furthermore, the counterions could be varied. Ultimately, a heteropolyacid surfactant (H+ as the counterion) could be prepared. The self-assembly behavior of the polyoxometalate surfactants into micelles and even lyotropic phases was studied. For instance, the formation of a phase with P6/mm symmetry containing hexagonally packed cylinders has been observed. Finally, it was possible to extend the functionality of classical amphiphiles. The polyoxometalate amphiphiles have been used for the emulsification of and, at the same time, as the initiator for the cationic polymerization of styrene. As a result, interesting organic−inorganic hybrid polymer latexes with surfaces containing heteropolyacid entities were prepared.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja1011178