Gold Nanoparticles Doped Conducting Polymer Nanorod Electrodes: Ferrocene Catalyzed Aptamer-Based Thrombin Immunosensor

Au nanoparticles-doped conducting polymer nanorods electrodes (AuNPs/CPNEs) were prepared by coating Au nanorods (AuNRs) with a conducting polymer layer. The AuNRs were prepared through an electroless deposition method using the polycarbonate membrane (pore diameter, 50 nm, pore density, 6 × 108 por...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2009-08, Vol.81 (16), p.6604-6611
Hauptverfasser: Rahman, Md. Aminur, Son, Jung Ik, Won, Mi-Sook, Shim, Yoon-Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Au nanoparticles-doped conducting polymer nanorods electrodes (AuNPs/CPNEs) were prepared by coating Au nanorods (AuNRs) with a conducting polymer layer. The AuNRs were prepared through an electroless deposition method using the polycarbonate membrane (pore diameter, 50 nm, pore density, 6 × 108 pores/cm2) as a template. The AuNPs/CPNEs combining catalytic activity of ferrocene to ascorbic acid were used for the fabrication of an ultrasensitive aptamer sensor for thrombin detection. The AuNPs/3D-CPNEs were characterized employing cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Sandwiched immunoasay for α-human thrombin with NH2-functionalized-thrombin binding aptamer (Apt) immobilized on AuNPs/3D-CPNEs was studied through the electrocatalytic oxidation of ascorbic acid by the ferrocene moiety that was bound with an antithrombin antibody and attached with the Apt/3D-CPNEs probe through target binding. Various experimental parameters affecting thrombin detection were optimized, and the performance of the thrombin aptamer sensor was examined. The Apt/AuNPs/3D-CPNEs based thrombin sensor exhibited a wide dynamic range of 5−2000 ng L−1 and a low detection limit of 5 ng L−1 (0.14 pM). The selectivity and the stability of the proposed thrombin aptamer sensor were excellent, and it was tested in a real human serum sample for the detection of spiked concentrations of thrombin.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac900285v