Gold Nanoparticles Doped Conducting Polymer Nanorod Electrodes: Ferrocene Catalyzed Aptamer-Based Thrombin Immunosensor
Au nanoparticles-doped conducting polymer nanorods electrodes (AuNPs/CPNEs) were prepared by coating Au nanorods (AuNRs) with a conducting polymer layer. The AuNRs were prepared through an electroless deposition method using the polycarbonate membrane (pore diameter, 50 nm, pore density, 6 × 108 por...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2009-08, Vol.81 (16), p.6604-6611 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Au nanoparticles-doped conducting polymer nanorods electrodes (AuNPs/CPNEs) were prepared by coating Au nanorods (AuNRs) with a conducting polymer layer. The AuNRs were prepared through an electroless deposition method using the polycarbonate membrane (pore diameter, 50 nm, pore density, 6 × 108 pores/cm2) as a template. The AuNPs/CPNEs combining catalytic activity of ferrocene to ascorbic acid were used for the fabrication of an ultrasensitive aptamer sensor for thrombin detection. The AuNPs/3D-CPNEs were characterized employing cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Sandwiched immunoasay for α-human thrombin with NH2-functionalized-thrombin binding aptamer (Apt) immobilized on AuNPs/3D-CPNEs was studied through the electrocatalytic oxidation of ascorbic acid by the ferrocene moiety that was bound with an antithrombin antibody and attached with the Apt/3D-CPNEs probe through target binding. Various experimental parameters affecting thrombin detection were optimized, and the performance of the thrombin aptamer sensor was examined. The Apt/AuNPs/3D-CPNEs based thrombin sensor exhibited a wide dynamic range of 5−2000 ng L−1 and a low detection limit of 5 ng L−1 (0.14 pM). The selectivity and the stability of the proposed thrombin aptamer sensor were excellent, and it was tested in a real human serum sample for the detection of spiked concentrations of thrombin. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac900285v |