Structure and gelation mechanism of silk hydrogels
Silk fibroin was regenerated from cocoons produced by the silkworm Bombyx Mori. Light scattering showed that an aqueous solution of the regenerated silk fibroin (RSF) was made of individual proteins with a weight average molar mass of about 4 x 10(5) g mol(-1) and a hydrodynamic radius of about 10 n...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2010-01, Vol.12 (15), p.3834-3844 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Silk fibroin was regenerated from cocoons produced by the silkworm Bombyx Mori. Light scattering showed that an aqueous solution of the regenerated silk fibroin (RSF) was made of individual proteins with a weight average molar mass of about 4 x 10(5) g mol(-1) and a hydrodynamic radius of about 10 nm. Gel formation of RSF in acidic solutions was investigated as a function of the pH (2-4), concentration (0.5-10 g L(-1)) and temperature (5-70 degrees C). The structure of the gels was studied using light scattering and confocal laser scanning microscopy. The structure was found to be self-similar from length scales of less than 15 nm up to length scales of about 1 microm, and characterized by a correlation length of a few microns. Gel formation was tracked using turbidity, rheology, light scattering and circular dichroism. Gelation involves the formation of self-similar aggregates with a growth rate that increases exponentially. The protein aggregation is correlated to, and perhaps caused by, the formation of beta-sheets, the fraction of which also increases exponentially with time. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/b916319k |