Loop-Mediated Isothermal Amplification Integrated on Microfluidic Chips for Point-of-Care Quantitative Detection of Pathogens
This work shows that loop-mediated isothermal amplification (LAMP) of nucleic acid can be integrated in an eight-channel microfluidic chip for readout either by the naked eye (as a result of the insoluble byproduct pyrophosphate generating during LAMP amplification) or via absorbance measured by an...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2010-04, Vol.82 (7), p.3002-3006 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work shows that loop-mediated isothermal amplification (LAMP) of nucleic acid can be integrated in an eight-channel microfluidic chip for readout either by the naked eye (as a result of the insoluble byproduct pyrophosphate generating during LAMP amplification) or via absorbance measured by an optic sensor; we call this system microLAMP (μLAMP). It is capable of analyzing target nucleic acids quantitatively with high sensitivity and specificity. The assay is straightforward in manipulation. It requires a sample volume of 0.4 μL and is complete within 1 h. The sensitivity of the assay is comparable to standard methods, where 10 fg of DNA sample could be detected under isothermal conditions (63 °C). A real time quantitative μLAMP assay using absorbance detection is possible by integration of optical fibers within the chip. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac1000652 |