On the parameterized complexity of pooling design
Pooling design is a very helpful tool for reducing the number of tests in DNA library screening, which is a key process to obtain high-quality DNA libraries for studying gene functions. Three basic problems in pooling design are, given an m x n binary matrix and a positive integer d, to decide wheth...
Gespeichert in:
Veröffentlicht in: | Journal of computational biology 2009-11, Vol.16 (11), p.1529-1537 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pooling design is a very helpful tool for reducing the number of tests in DNA library screening, which is a key process to obtain high-quality DNA libraries for studying gene functions. Three basic problems in pooling design are, given an m x n binary matrix and a positive integer d, to decide whether the matrix is d-separable (d-separable, or d-disjunct). The three problems are all known to be coNP-complete. Since in most applications, d is a small integer compared to n, it is interesting to investigate whether there are efficient algorithms solving the above problems when the value of d is small. In this article, we give a negative answer to the above question by studying the parameterized complexity of these three problems, with d as the parameter. We show that the parameterized versions of all the three problems are co-W[2]-complete. An immediate implication of our results is that, given an m x n binary matrix and a positive integer d, a deterministic algorithm with running time f(d) x (mn)(O(1)) (where f is an arbitrary computable function) to decide whether the matrix is d-separable (d-separable, or d-disjunct) should not be expected. |
---|---|
ISSN: | 1066-5277 1557-8666 |
DOI: | 10.1089/cmb.2008.0224 |