Three-dimensional color object visualization and recognition using multi-wavelength computational holography

In this paper, we address 3D object visualization and recognition with multi-wavelength digital holography. Color features of 3D objects are obtained by the multiple-wavelengths. Perfect superimposition technique generates reconstructed images of the same size. Statistical pattern recognition techni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2007-07, Vol.15 (15), p.9394-9402
Hauptverfasser: Yeom, Seokwon, Javidi, Bahram, Ferraro, Pietro, Alfieri, Domenico, Denicola, Sergio, Finizio, Andrea
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we address 3D object visualization and recognition with multi-wavelength digital holography. Color features of 3D objects are obtained by the multiple-wavelengths. Perfect superimposition technique generates reconstructed images of the same size. Statistical pattern recognition techniques: principal component analysis and mixture discriminant analysis analyze multi-spectral information in the reconstructed images. Class-conditional probability density functions are estimated during the training process. Maximum likelihood decision rule categorizes unlabeled images into one of trained-classes. It is shown that a small number of training images is sufficient for the color object classification.
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.15.009394