Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice

Quercetin is a plant-derived flavonoid widely known by its anti-oxidant and anti-inflammatory properties, but its oral bioavailability is very poor and this becomes difficult to assess its therapeutic potential. Here we have compared the anti-inflammatory effect of quercetin-loaded microemulsion (QU...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacological research 2010-04, Vol.61 (4), p.288-297
Hauptverfasser: Rogerio, Alexandre P., Dora, Cristiana L., Andrade, Edinéia L., Chaves, Juliana S., Silva, Luis F.C., Lemos-Senna, Elenara, Calixto, João B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quercetin is a plant-derived flavonoid widely known by its anti-oxidant and anti-inflammatory properties, but its oral bioavailability is very poor and this becomes difficult to assess its therapeutic potential. Here we have compared the anti-inflammatory effect of quercetin-loaded microemulsion (QU-ME) and quercetin suspension (QU-SP) in an experimental model of airways allergic inflammation. Mice received daily oral doses of QU-ME (3 or 10 mg/kg; in an oil-in-water microemulsion content 0.02:0.2:1 of lecithin:castor oil:Solutol HS15 ®), QU-SP [10 mg/kg, in carboxymethylcellulose (CMC) 0.5% in water] or vehicle from the 18th to the 22nd day after the first immunization with ovalbumin (OVA). Dexamethasone was used as positive control drug. Every parameter was evaluated in the 22nd day (24 h after the second OVA-challenge). We have also tried to assess by HPLC–MS a quercetin metabolite in the blood of rats treated with QU-SP or QU-ME. QU-ME was better orally absorbed when compared with QU-SP. Furthermore, oral administration of QU-SP failed to interfere with leukocyte recruitment, while QU-ME inhibited in a dose-dependent way, the eosinophil recruitment to the bronchoalveolar lavage fluid (BALF). QU-ME also significantly reduced both IL-5 and IL-4 levels, but failed to interfere with CCL11, IFN-γ and LTB 4 levels. In addition, QU-ME oral treatment inhibited the nuclear transcription factor kappa B (NF-κB) activation, P-selectin expression and the mucus production in the lung. The present results show that QU-ME exhibits pronounced anti-inflammatory properties in a murine model of airways allergic inflammation and suggest that it might present therapeutic potential for the airways inflammatory diseases management.
ISSN:1043-6618
1096-1186
DOI:10.1016/j.phrs.2009.10.005