Minimum description length model selection of multinomial processing tree models

Multinomial processing tree (MPT) modeling has been widely and successfully applied as a statistical methodology for measuring hypothesized latent cognitive processes in selected experimental paradigms. In this article, we address the problem of selecting the best MPT model from a set of scientifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychonomic bulletin & review 2010-06, Vol.17 (3), p.275-286
Hauptverfasser: Wu, Hao, Myung, Jay I., Batchelder, William H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multinomial processing tree (MPT) modeling has been widely and successfully applied as a statistical methodology for measuring hypothesized latent cognitive processes in selected experimental paradigms. In this article, we address the problem of selecting the best MPT model from a set of scientifically plausible MPT models, given observed data. We introduce a minimum description length (MDL) based model-selection approach that overcomes the limitations of existing methods such as the G 2 -based likelihood ratio test, the Akaike information criterion, and the Bayesian information criterion. To help ease the computational burden of implementing MDL, we provide a computer program in MATLAB that performs MDL-based model selection for any MPT model, with or without inequality constraints. Finally, we discuss applications of the MDL approach to well-studied MPT models with real data sets collected in two different experimental paradigms: source monitoring and pair clustering. The aforementioned MATLAB program may be downloaded from http://pbr.psychonomic-journals.org/content/supplemental.
ISSN:1069-9384
1531-5320
DOI:10.3758/PBR.17.3.275