Minimum description length model selection of multinomial processing tree models
Multinomial processing tree (MPT) modeling has been widely and successfully applied as a statistical methodology for measuring hypothesized latent cognitive processes in selected experimental paradigms. In this article, we address the problem of selecting the best MPT model from a set of scientifica...
Gespeichert in:
Veröffentlicht in: | Psychonomic bulletin & review 2010-06, Vol.17 (3), p.275-286 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multinomial processing tree (MPT) modeling has been widely and successfully applied as a statistical methodology for measuring hypothesized latent cognitive processes in selected experimental paradigms. In this article, we address the problem of selecting the best MPT model from a set of scientifically plausible MPT models, given observed data. We introduce a minimum description length (MDL) based model-selection approach that overcomes the limitations of existing methods such as the
G
2
-based likelihood ratio test, the Akaike information criterion, and the Bayesian information criterion. To help ease the computational burden of implementing MDL, we provide a computer program in MATLAB that performs MDL-based model selection for any MPT model, with or without inequality constraints. Finally, we discuss applications of the MDL approach to well-studied MPT models with real data sets collected in two different experimental paradigms: source monitoring and pair clustering. The aforementioned MATLAB program may be downloaded from http://pbr.psychonomic-journals.org/content/supplemental. |
---|---|
ISSN: | 1069-9384 1531-5320 |
DOI: | 10.3758/PBR.17.3.275 |