Negative modulation of L-type Ca2+ channels via β-adrenoceptor stimulation in guinea-pig detrusor smooth muscle cells

beta-Adrenergic stimulation enhances the activity of L-type Ca(2+) channels through mechanisms mediated by adenosine 3'5'-cyclic monophosphate (cAMP) and protein kinase A in cardiac myocytes. However, in smooth muscle cells, the effect of beta-adrenoceptor stimulation on the L-type Ca(2+)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2003-05, Vol.470 (1-2), p.9-15
Hauptverfasser: KOBAYASHI, Hiroyuki, MIWA, Takashi, NAGAO, Taku, ADACHI-AKAHANE, Satomi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:beta-Adrenergic stimulation enhances the activity of L-type Ca(2+) channels through mechanisms mediated by adenosine 3'5'-cyclic monophosphate (cAMP) and protein kinase A in cardiac myocytes. However, in smooth muscle cells, the effect of beta-adrenoceptor stimulation on the L-type Ca(2+) channel activity has been controversial, and the exact mechanism is still unclear. The present study was aimed at elucidating the effect of beta-adrenergic stimulation upon the activity of L-type Ca(2+) channels in guinea-pig detrusor smooth muscle cells. Isoproterenol (0.1-1 microM) inhibited Ba(2+) currents through L-type Ca(2+) channels (I(Ba)). Isoproterenol (0.1 microM) shifted the steady-state inactivation curve to negative voltages by 11 mV without affecting activation curves. The stimulation of cAMP-mediated signal transduction pathway by forskolin, 8-bromoadenosine 3'5'-cyclic monophosphate (8-Br-cAMP), or the intracellular application of cAMP also mimicked the effects of isoproterenol on I(Ba), which was blocked by the inhibition of protein kinase A. These results indicate that, in detrusor smooth muscles, the stimulation of beta-adrenoceptors exerts negative modulation of L-type Ca(2+) channels via cAMP/protein kinase A-dependent mechanism.
ISSN:0014-2999
1879-0712
DOI:10.1016/S0014-2999(03)01762-X