Revealing Intuitively Assessable Chemical Bonding Patterns in Organic Aromatic Molecules via Adaptive Natural Density Partitioning

The newly developed adaptive natural density partitioning (AdNDP) method has been applied to a series of organic aromatic mono- and polycyclic molecules, including cyclopropenyl cation, cyclopentadienyl anion, benzene, naphthalene, anthracene, phenanthrene, triphenylene, and coronene. The patterns o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2008-12, Vol.73 (23), p.9251-9258
Hauptverfasser: Zubarev, Dmitry Yu, Boldyrev, Alexander I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The newly developed adaptive natural density partitioning (AdNDP) method has been applied to a series of organic aromatic mono- and polycyclic molecules, including cyclopropenyl cation, cyclopentadienyl anion, benzene, naphthalene, anthracene, phenanthrene, triphenylene, and coronene. The patterns of chemical bonding obtained by AdNDP are consistent with chemical intuition and lead to unique, compact, graphic formulas. The resulting bonding patterns avoid resonant description and are always consistent with the point symmetry of the molecule. The AdNDP representation of aromatic systems seamlessly incorporates localized and delocalized bonding elements.
ISSN:0022-3263
1520-6904
DOI:10.1021/jo801407e