DNA self-assembly: from 2D to 3D
This paper describes our recent efforts on the self-assembly of three-dimensional (3D) DNA nanostructures from DNA star motifs (tiles). DNA star motifs are a family of DNA nanostructures with 3, 4, 5, or 6 branches; they are named as 3-, 4-, 5-, 6-point-star motifs, respectively. Such motifs are pro...
Gespeichert in:
Veröffentlicht in: | Faraday discussions 2009-01, Vol.143, p.221-33; discussion 265-75 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes our recent efforts on the self-assembly of three-dimensional (3D) DNA nanostructures from DNA star motifs (tiles). DNA star motifs are a family of DNA nanostructures with 3, 4, 5, or 6 branches; they are named as 3-, 4-, 5-, 6-point-star motifs, respectively. Such motifs are programmed to further assemble into nanocages (regular polyhedra or irregular nanocapsules) with diameters ranging from 20 nm to 2 microm. Among them, DNA nanocages derived from 3-point-star motif consists of a group of regular polyhedra: tetrahedra, hexahedra (or cubes), dodecahedra and buckyballs (containing 4, 8, 20, and 60 units of the 3-point-star motif, respectively). An icosahedron consists of twelve 5-point-star motifs and is similar to the shapes of spherical viruses. 6-point-star motifs can not assemble into regular polyhedra; instead, some sphere-like or irregular cages with diameters about 1-2 microm will form. Similar large cages can also assemble from the 5-point-star motif when the DNA concentrations are higher than those for assembling regular icosahedra. In our study, we have identified several important factors for assembly of well-defined 3D nanostructures, including the concentration, the flexibility, and the arm length of the DNA tiles and the association strength between the DNA tiles. |
---|---|
ISSN: | 1359-6640 1364-5498 |
DOI: | 10.1039/b905313c |