Electrospray ionization mass spectrometric analysis of newly synthesized α,β-unsaturated γ-lactones fused to sugars
Knowledge of the fragmentation mechanisms of lactones and their behaviour under electrospray ionization (ESI) conditions can be extended to larger and more complex natural products that contain an α,β‐unsaturated γ‐lactone moiety in their structure. Moreover, little is known about the gas‐phase beha...
Gespeichert in:
Veröffentlicht in: | Rapid communications in mass spectrometry 2010-04, Vol.24 (7), p.1049-1058 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Knowledge of the fragmentation mechanisms of lactones and their behaviour under electrospray ionization (ESI) conditions can be extended to larger and more complex natural products that contain an α,β‐unsaturated γ‐lactone moiety in their structure. Moreover, little is known about the gas‐phase behaviour of α,β‐unsaturated γ‐lactones linked or fused to sugars. Therefore, five α,β‐unsaturated γ‐lactones (butenolides) fused to a pyranose ring, recently synthesized compounds with potential relevance regarding their biological properties, were investigated using ESI‐MS and ESI‐MS/MS in both positive and negative ion modes. Their fragmentation mechanisms and product ion structures were compared. It was observed that two isomers could be unambiguously distinguished in the negative ion mode by the fragmentation pathways of their deprotonated molecules as well as in the positive ion mode by the fragmentation pathways of either the protonated or the sodiated molecule.
Fragmentation mechanisms are proposed taking into account the MS/MS data and semi‐empirical calculations using the PM6 Hamiltonean. The semi‐empirical calculations were also very useful in determining the most probable protonation and cationization sites. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0951-4198 1097-0231 |
DOI: | 10.1002/rcm.4490 |