Donor−Acceptor Biomorphs from the Ionic Self-Assembly of Porphyrins

Microscale four-leaf clover-shaped structures are formed by self-assembly of anionic and cationic porphyrins. Depending on the metal complexed in the porphyrin macrocycle (Zn or Sn), the porphyrin cores are either electron donors or electron acceptors. All four combinations of these two metals in ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2010-06, Vol.132 (23), p.8194-8201
Hauptverfasser: Martin, Kathleen E, Wang, Zhongchun, Busani, Tito, Garcia, Robert M, Chen, Zhu, Jiang, Yingbing, Song, Yujiang, Jacobsen, John L, Vu, Tony T, Schore, Neil E, Swartzentruber, Brian S, Medforth, Craig J, Shelnutt, John A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microscale four-leaf clover-shaped structures are formed by self-assembly of anionic and cationic porphyrins. Depending on the metal complexed in the porphyrin macrocycle (Zn or Sn), the porphyrin cores are either electron donors or electron acceptors. All four combinations of these two metals in cationic tetra(N-ethanol-4-pyridinium)porphyrin and anionic tetra(sulfonatophenyl)porphyrin result in related cloverlike structures with similar crystalline packing indicated by X-ray diffraction patterns. The clover morphology transforms as the ionic strength and temperature of the self-assembly reaction are increased, but the structures maintain 4-fold symmetry. The ability to alter the electronic and photophysical properties of these solids (e.g., by altering the metals in the porphyrins) and to vary cooperative interactions between the porphyrin subunits raises the possibility of producing binary solids with tunable functionality. For example, we show that the clovers derived from anionic Zn porphyrins (electron donors) and cationic Sn porphyrins (electron acceptors) are photoconductors, but when the metals are reversed in the two porphyrins, the resulting clovers are insulators.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja102194x