Fusion of face and speech data for person identity verification

Biometric person identity authentication is gaining more and more attention. The authentication task performed by an expert is a binary classification problem: reject or accept identity claim. Combining experts, each based on a different modality (speech, face, fingerprint, etc.), increases the perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1999, Vol.10 (5), p.1065-1074
Hauptverfasser: Ben-Yacoub, S., Abdeljaoued, Y., Mayoraz, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1074
container_issue 5
container_start_page 1065
container_title IEEE transactions on neural networks
container_volume 10
creator Ben-Yacoub, S.
Abdeljaoued, Y.
Mayoraz, E.
description Biometric person identity authentication is gaining more and more attention. The authentication task performed by an expert is a binary classification problem: reject or accept identity claim. Combining experts, each based on a different modality (speech, face, fingerprint, etc.), increases the performance and robustness of identity authentication systems. In this context, a key issue is the fusion of the different experts for taking a final decision (i.e., accept or reject identity claim). We propose to evaluate different binary classification schemes (support vector machine, multilayer perceptron, C4.5 decision tree, Fisher's linear discriminant, Bayesian classifier) to carry on the fusion. The experimental results show that support vector machines and Bayesian classifier achieve almost the same performances, and both outperform the other evaluated classifiers.
doi_str_mv 10.1109/72.788647
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_733252135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>788647</ieee_id><sourcerecordid>26973798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-90486b3b1d38366f3c4430061e9a9687341dc9dc13615863d47a2c48f5c71e393</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgipvTg1cPkpPioTMvSfPjJDKcCgMvei5Z-oqVra1NK-y_N9KiN3fKI-_zHiRfQs6BzQGYvdV8ro1RUh-QKVgJCWNWHMaayTSxnOsJOQnhgzGQKVPHZAKGp1wxOyV3yz6UdUXrghbOI3VVTkOD6N9p7jpHi7qlDbYhkjLHqiu7Hf3CtixK77o4eEqOCrcJeDaeM_K2fHhdPCWrl8fnxf0q8VKwLrFMGrUWa8iFEUoVwst4zxSgdVYZLSTk3uYehILUKJFL7biXpki9BhRWzMj1sLdp688eQ5dty-Bxs3EV1n3ILFgLXFu5V2oh4uNBpFFe_Su5EfEHld4PldVCWxPhzQB9W4fQYpE1bbl17S4Dlv1ElWmeDVFFezku7ddbzP_kmE0EFwMoEfG3PU5_Azpmkxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26973798</pqid></control><display><type>article</type><title>Fusion of face and speech data for person identity verification</title><source>IEEE Electronic Library (IEL)</source><creator>Ben-Yacoub, S. ; Abdeljaoued, Y. ; Mayoraz, E.</creator><creatorcontrib>Ben-Yacoub, S. ; Abdeljaoued, Y. ; Mayoraz, E.</creatorcontrib><description>Biometric person identity authentication is gaining more and more attention. The authentication task performed by an expert is a binary classification problem: reject or accept identity claim. Combining experts, each based on a different modality (speech, face, fingerprint, etc.), increases the performance and robustness of identity authentication systems. In this context, a key issue is the fusion of the different experts for taking a final decision (i.e., accept or reject identity claim). We propose to evaluate different binary classification schemes (support vector machine, multilayer perceptron, C4.5 decision tree, Fisher's linear discriminant, Bayesian classifier) to carry on the fusion. The experimental results show that support vector machines and Bayesian classifier achieve almost the same performances, and both outperform the other evaluated classifiers.</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.788647</identifier><identifier>PMID: 18252609</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Authentication ; Bayesian analysis ; Bayesian methods ; Biometrics ; Classification ; Classification tree analysis ; Classifiers ; Decision trees ; Fingerprint recognition ; Multilayer perceptrons ; Robustness ; Speech ; Support vector machine classification ; Support vector machines</subject><ispartof>IEEE transactions on neural networks, 1999, Vol.10 (5), p.1065-1074</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-90486b3b1d38366f3c4430061e9a9687341dc9dc13615863d47a2c48f5c71e393</citedby><cites>FETCH-LOGICAL-c430t-90486b3b1d38366f3c4430061e9a9687341dc9dc13615863d47a2c48f5c71e393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/788647$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/788647$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18252609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben-Yacoub, S.</creatorcontrib><creatorcontrib>Abdeljaoued, Y.</creatorcontrib><creatorcontrib>Mayoraz, E.</creatorcontrib><title>Fusion of face and speech data for person identity verification</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>Biometric person identity authentication is gaining more and more attention. The authentication task performed by an expert is a binary classification problem: reject or accept identity claim. Combining experts, each based on a different modality (speech, face, fingerprint, etc.), increases the performance and robustness of identity authentication systems. In this context, a key issue is the fusion of the different experts for taking a final decision (i.e., accept or reject identity claim). We propose to evaluate different binary classification schemes (support vector machine, multilayer perceptron, C4.5 decision tree, Fisher's linear discriminant, Bayesian classifier) to carry on the fusion. The experimental results show that support vector machines and Bayesian classifier achieve almost the same performances, and both outperform the other evaluated classifiers.</description><subject>Authentication</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Biometrics</subject><subject>Classification</subject><subject>Classification tree analysis</subject><subject>Classifiers</subject><subject>Decision trees</subject><subject>Fingerprint recognition</subject><subject>Multilayer perceptrons</subject><subject>Robustness</subject><subject>Speech</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9LwzAUB_AgipvTg1cPkpPioTMvSfPjJDKcCgMvei5Z-oqVra1NK-y_N9KiN3fKI-_zHiRfQs6BzQGYvdV8ro1RUh-QKVgJCWNWHMaayTSxnOsJOQnhgzGQKVPHZAKGp1wxOyV3yz6UdUXrghbOI3VVTkOD6N9p7jpHi7qlDbYhkjLHqiu7Hf3CtixK77o4eEqOCrcJeDaeM_K2fHhdPCWrl8fnxf0q8VKwLrFMGrUWa8iFEUoVwst4zxSgdVYZLSTk3uYehILUKJFL7biXpki9BhRWzMj1sLdp688eQ5dty-Bxs3EV1n3ILFgLXFu5V2oh4uNBpFFe_Su5EfEHld4PldVCWxPhzQB9W4fQYpE1bbl17S4Dlv1ElWmeDVFFezku7ddbzP_kmE0EFwMoEfG3PU5_Azpmkxw</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Ben-Yacoub, S.</creator><creator>Abdeljaoued, Y.</creator><creator>Mayoraz, E.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>1999</creationdate><title>Fusion of face and speech data for person identity verification</title><author>Ben-Yacoub, S. ; Abdeljaoued, Y. ; Mayoraz, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-90486b3b1d38366f3c4430061e9a9687341dc9dc13615863d47a2c48f5c71e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Authentication</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Biometrics</topic><topic>Classification</topic><topic>Classification tree analysis</topic><topic>Classifiers</topic><topic>Decision trees</topic><topic>Fingerprint recognition</topic><topic>Multilayer perceptrons</topic><topic>Robustness</topic><topic>Speech</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Ben-Yacoub, S.</creatorcontrib><creatorcontrib>Abdeljaoued, Y.</creatorcontrib><creatorcontrib>Mayoraz, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ben-Yacoub, S.</au><au>Abdeljaoued, Y.</au><au>Mayoraz, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of face and speech data for person identity verification</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1999</date><risdate>1999</risdate><volume>10</volume><issue>5</issue><spage>1065</spage><epage>1074</epage><pages>1065-1074</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>Biometric person identity authentication is gaining more and more attention. The authentication task performed by an expert is a binary classification problem: reject or accept identity claim. Combining experts, each based on a different modality (speech, face, fingerprint, etc.), increases the performance and robustness of identity authentication systems. In this context, a key issue is the fusion of the different experts for taking a final decision (i.e., accept or reject identity claim). We propose to evaluate different binary classification schemes (support vector machine, multilayer perceptron, C4.5 decision tree, Fisher's linear discriminant, Bayesian classifier) to carry on the fusion. The experimental results show that support vector machines and Bayesian classifier achieve almost the same performances, and both outperform the other evaluated classifiers.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18252609</pmid><doi>10.1109/72.788647</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transactions on neural networks, 1999, Vol.10 (5), p.1065-1074
issn 1045-9227
1941-0093
language eng
recordid cdi_proquest_miscellaneous_733252135
source IEEE Electronic Library (IEL)
subjects Authentication
Bayesian analysis
Bayesian methods
Biometrics
Classification
Classification tree analysis
Classifiers
Decision trees
Fingerprint recognition
Multilayer perceptrons
Robustness
Speech
Support vector machine classification
Support vector machines
title Fusion of face and speech data for person identity verification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20face%20and%20speech%20data%20for%20person%20identity%20verification&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Ben-Yacoub,%20S.&rft.date=1999&rft.volume=10&rft.issue=5&rft.spage=1065&rft.epage=1074&rft.pages=1065-1074&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.788647&rft_dat=%3Cproquest_RIE%3E26973798%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26973798&rft_id=info:pmid/18252609&rft_ieee_id=788647&rfr_iscdi=true