Fusion of face and speech data for person identity verification

Biometric person identity authentication is gaining more and more attention. The authentication task performed by an expert is a binary classification problem: reject or accept identity claim. Combining experts, each based on a different modality (speech, face, fingerprint, etc.), increases the perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1999, Vol.10 (5), p.1065-1074
Hauptverfasser: Ben-Yacoub, S., Abdeljaoued, Y., Mayoraz, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biometric person identity authentication is gaining more and more attention. The authentication task performed by an expert is a binary classification problem: reject or accept identity claim. Combining experts, each based on a different modality (speech, face, fingerprint, etc.), increases the performance and robustness of identity authentication systems. In this context, a key issue is the fusion of the different experts for taking a final decision (i.e., accept or reject identity claim). We propose to evaluate different binary classification schemes (support vector machine, multilayer perceptron, C4.5 decision tree, Fisher's linear discriminant, Bayesian classifier) to carry on the fusion. The experimental results show that support vector machines and Bayesian classifier achieve almost the same performances, and both outperform the other evaluated classifiers.
ISSN:1045-9227
1941-0093
DOI:10.1109/72.788647