Theory of the double-edge molecular technique for Doppler lidar wind measurement
The theory of the double-edge lidar technique for measuring the wind with molecular backscatter is described. Two high-spectral-resolution edge filters are located in the wings of the Rayleigh-Brillouin profile. This doubles the signal change per unit Doppler shift, the sensitivity, and improves mea...
Gespeichert in:
Veröffentlicht in: | Applied Optics 1999-01, Vol.38 (3), p.432-440 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The theory of the double-edge lidar technique for measuring the wind with molecular backscatter is described. Two high-spectral-resolution edge filters are located in the wings of the Rayleigh-Brillouin profile. This doubles the signal change per unit Doppler shift, the sensitivity, and improves measurement accuracy relative to the single-edge technique by nearly a factor of 2. The use of a crossover region where the sensitivity of a molecular- and an aerosol-based measurement is equal is described. Use of this region desensitizes the molecular measurement to the effects of aerosol scattering over a velocity range of +/-100 m/s. We give methods for correcting short-term, shot-to-shot, frequency jitter and drift with a laser reference frequency measurement and methods for long-term frequency correction with a servo control system. The effects of Rayleigh-Brillouin scattering on the measurement are shown to be significant and are included in the analysis. Simulations for a conical scanning satellite-based lidar at 355 nm show an accuracy of 2-3 m/s for altitudes of 2-15 km for a 1-km vertical resolution, a satellite altitude of 400 km, and a 200 km x 200 km spatial resolution. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/ao.38.000432 |