Monte Carlo study of pathlength distribution of polarized light in turbid media
Photon pathlength distributions as a function of the number of scattering events in cylindrical turbid samples are studied using a polarization-sensitive Monte Carlo model with linearly polarized light input. Sample scattering causes extensive depolarization, yielding a photon field comprised of pol...
Gespeichert in:
Veröffentlicht in: | Optics express 2007-02, Vol.15 (3), p.1348-1360 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photon pathlength distributions as a function of the number of scattering events in cylindrical turbid samples are studied using a polarization-sensitive Monte Carlo model with linearly polarized light input. Sample scattering causes extensive depolarization, yielding a photon field comprised of polarized and depolarized sub-populations. It is found that the pathlength of polarization-preserving photons is distributed within a defined spatial range with strong angular dependence. This pathlength, averaged over the range, is 2-3X smaller than the one averaged over the widely-spread range of all (polarized + depolarized) collected photons. It is also demonstrated that changes in optical properties of the media affect the pathlength distributions. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.15.001348 |