The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength
Supercontinuum generation with femtosecond pulses in photonic crystal fibers with two zero-dispersion wavelengths (ZDWs) is investigated numerically. The role of the higher ZDW is examined for 5 fiber designs with a nearly constant lower ZDW. It is found that the resulting spectrum is mainly determi...
Gespeichert in:
Veröffentlicht in: | Optics express 2005-08, Vol.13 (16), p.6181-6192 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supercontinuum generation with femtosecond pulses in photonic crystal fibers with two zero-dispersion wavelengths (ZDWs) is investigated numerically. The role of the higher ZDW is examined for 5 fiber designs with a nearly constant lower ZDW. It is found that the resulting spectrum is mainly determined by self-phase modulation in the first few mm of fiber, followed by soliton self-frequency shift and amplification of dispersive waves. It is demonstrated how femtosecond soliton pulses can be generated with any desired center wavelength in the 1020-1200 nm range by adjusting the fiber length. Further, the generation of a bright-bright soliton-pair from an initial single red-shifted soliton is found. The soliton-pair has one color in the anomalous dispersion region and the other color in the normal dispersion region, which has not previously been described for bright-bright soliton-pairs. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/opex.13.006181 |