Magnetic Susceptibility of Molecular Carbon: Nanotubes and Fullerite

Elemental carbon can be synthesized in a variety of geometrical forms, from three-dimensional extended structures (diamond) to finite molecules (C$_{60}$ fullerite). Results are presented here on the magnetic susceptibility of the least well-understood members of this family, nanotubes and C$_{60}$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1994-07, Vol.265 (5168), p.84-86
Hauptverfasser: Ramirez, A. P., Haddon, R. C., Zhou, O., Fleming, R. M., Zhang, J., McClure, S. M., Smalley, R. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elemental carbon can be synthesized in a variety of geometrical forms, from three-dimensional extended structures (diamond) to finite molecules (C$_{60}$ fullerite). Results are presented here on the magnetic susceptibility of the least well-understood members of this family, nanotubes and C$_{60}$ fullerite. (i) Nanotubes represent the cylindrical form of carbon, intermediate between graphite and fullerite. They are found to have significantly larger orientation-averaged susceptibility, on a per carbon basis, than any other form of elemental carbon. This susceptibility implies an average band structure among nanotubes similar to that of graphite. (ii) High-resolution magnetic susceptibility data on C$_{60}$ fullerite near the molecular orientational-ordering transition at 259 K show a sharp jump corresponding to 2.5 centimeter-gram-second parts per million per mole of C$_{60}$. This jump directly demonstrates the effect of an intermolecular cooperative transition on an intramolecular electronic property, where the susceptibility jump may be ascribed to a change in the shape of the molecule due to lattice forces.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.265.5168.84