Dynamics of Fractal Networks

Random structures often exhibit fractal geometry, defined in terms of the mass scaling exponent, D, the fractal dimension. The vibrational dynamics of fractal networks are expressed in terms of the exponent ̿d, the fracton dimensionality. The eigenstates on a fractal network are spatially localized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1986-02, Vol.231 (4740), p.814-819
1. Verfasser: Orbach, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Random structures often exhibit fractal geometry, defined in terms of the mass scaling exponent, D, the fractal dimension. The vibrational dynamics of fractal networks are expressed in terms of the exponent ̿d, the fracton dimensionality. The eigenstates on a fractal network are spatially localized for ̿d less than or equal to 2. The implications of fractal geometry are discussed for thermal transport on fractal networks. The electron-fracton interaction is developed, with a brief outline given for the time dependence of the electronic relaxation on fractal networks. It is suggested that amorphous or glassy materials may exhibit fractal properties at short length scales or, equivalently, at high energies. The calculations of physical properties can be used to test the fractal character of the vibrational excitations in these materials.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.231.4740.814