Raphespinal and reticulospinal axon collaterals to the hypoglossal nucleus in the rat

Neurons in the medial tegmental field project directly to spinal somatic motoneurons and to cranial motoneuron pools such as the hypoglossal nucleus. The axons of these neurons may be highly collateralized, projecting to multiple levels of the spinal cord and to many diverse regions at different lev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 1992-08, Vol.322 (1), p.68-78
Hauptverfasser: Manaker, Scott, Tischler, Laura J., Morrison, Adrian R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurons in the medial tegmental field project directly to spinal somatic motoneurons and to cranial motoneuron pools such as the hypoglossal nucleus. The axons of these neurons may be highly collateralized, projecting to multiple levels of the spinal cord and to many diverse regions at different levels of the neuraxis. We employed a double fluorescent retrograde tracer technique to examine whether medial tegmental neurons that project to the spinal cord also project to the hypoglossal nucleus. Injections of Diamidino Yellow into the hypoglossal nucleus and Fast Blue into the spinal cord produced large numbers of double labeled neurons in the medial tegmental field, particularly in the caudal raphe nuclei and adjacent ventromedial reticular formation. In these structures the number of neurons projecting to both the hypoglossal nucleus and the spinal cord was equivalent to the number of neurons projecting to multiple levels of the spinal cord observed in control animals. Fewer neurons projecting to both the hypoglossal nucleus and the spinal cord were observed in several other nuclei and subregions of the medial tegmental field, while almost no such neurons were observed in the lateral tegmental field or other pontomedullary structures. These results demonstrate that neurons of the caudal raphe nuclei and adjacent ventromedial reticular formation project to both the spinal cord and the hypoglossal nucleus, and support the concept that the diffuse projections to motoneuron pools from the medial tegmental field globally modulate both spinal and cranial somatic motoneuron excitability. © 1992 Wiley‐Liss, Inc.
ISSN:0021-9967
1096-9861
DOI:10.1002/cne.903220106