Dislocations and flux pinning in YBa2Cu3O7-δ

Bulk YBa(2)Cu(3)O(7-delta) superconductors, under certain processing conditions such as melt texturing, exhibit a very high dislocation density of 10(9) to 10(10) per square centimeter. In addition, the density of low-angle grain boundaries in such samples can be significantly increased (to less tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1991-07, Vol.253 (5018), p.427-429
Hauptverfasser: JIN, S, KAMMLOTT, G. W, NAKAHARA, S, TIEFEL, T. H, GRAEBNER, J. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bulk YBa(2)Cu(3)O(7-delta) superconductors, under certain processing conditions such as melt texturing, exhibit a very high dislocation density of 10(9) to 10(10) per square centimeter. In addition, the density of low-angle grain boundaries in such samples can be significantly increased (to less than 700-nanometer spacing) through a dispersion of submicrometer-sized Y(2)BaCuO(5) inclusions. These defect densities are comparable to those in high critical current thin films as revealed through scanning tunneling microscopy, and yet the critical current densities in the bulk materials (at 77 kelvin and a field of 1 tesla for example) remain at a 10(4) amperes per square centimeter level, about two orders of magnitude lower than in thin films. The results imply that these defect density levels are not significant enough to explain the difference in flux pinning strength between the thin film and bulk materials. The observation of spiral-like growth of the superconductor phase in bulk Y-Ba-Cu-O is also reported.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.253.5018.427