The Bioavailable Octapeptide Gly-Ala-Hyp-Gly-Leu-Hyp-Gly-Pro Stimulates Nitric Oxide Synthesis in Vascular Endothelial Cells

Gly-Ala-Hyp-Gly-Leu-Hyp-Gly-Pro (GAXGLXGP, X: Hyp), an octapeptide contained in chicken collagen hydrolysate, inhibits angiotensin I-converting enzyme activity in vitro. Intestinal Caco-2 and bovine aortic endothelial cells (BAECs) were used to investigate whether the transported GAXGLXGP improves v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2010-06, Vol.58 (11), p.6960-6965
Hauptverfasser: Shimizu, Kazuo, Sato, Mikako, Zhang, Youzuo, Kouguchi, Tomomi, Takahata, Yoshihisa, Morimatsu, Fumiki, Shimizu, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gly-Ala-Hyp-Gly-Leu-Hyp-Gly-Pro (GAXGLXGP, X: Hyp), an octapeptide contained in chicken collagen hydrolysate, inhibits angiotensin I-converting enzyme activity in vitro. Intestinal Caco-2 and bovine aortic endothelial cells (BAECs) were used to investigate whether the transported GAXGLXGP improves vascular function. When GAXGLXGP was added to the apical side of Caco-2 monolayers, the intact form of GAXGLXGP was released to the basolateral side without incorporation into the cells. This transport was energy-independent but was associated with tight junction permeability. GAXGLXGP was then added to BAECs, and endothelial nitric oxide (NO) synthase (eNOS) activation was examined. GAXGLXGP at a concentration of 10 μM stimulated production of NO during a 1 h incubation. This event involved phosphorylation of eNOS at Ser1179 without a change in the total eNOS protein level. These findings indicate that GAXGLXGP absorbed intact through the intestinal epithelium has direct effects on eNOS activity in vascular endothelial cells, leading to NO synthesis, thereby suggesting the potential for improvement in vascular function.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf100388w