[3H]-thymidine labelling of DNA triggers apoptosis potentiated by E1A-adenoviral protein
[(3)H]-thymidine is commonly used to analyze the accumulation of [(3)H]-labeled chromatin fragments in cells undergoing apoptosis. This study shows that [(3)H]-thymidine incorporation within DNA is sufficient per se to inhibit growth and to induce apoptosis in canine kidney epithelial cells and porc...
Gespeichert in:
Veröffentlicht in: | Apoptosis (London) 2003-03, Vol.8 (2), p.199-208 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [(3)H]-thymidine is commonly used to analyze the accumulation of [(3)H]-labeled chromatin fragments in cells undergoing apoptosis. This study shows that [(3)H]-thymidine incorporation within DNA is sufficient per se to inhibit growth and to induce apoptosis in canine kidney epithelial cells and porcine aorta endothelial cells. Despite high-level [(3)H]-thymidine-DNA labeling, rat vascular smooth muscle cells (VSMC) showed only modest inhibition of growth and induction of apoptosis compared to other cell types. Similarly to serum deprivation, apoptosis triggered by [(3)H]-thymidine labeling was sharply potentiated by VSMC transfection with a functional analogue of c-myc, E1A-adenoviral protein (VSMC-E1A), and was suppressed by stimulation of cAMP signaling with forskolin as well as by and Na/K pump inhibition with ouabain. Both apoptosis induction and growth suppression seen in [(3)H]-thymidine-treated VSMC-E1A were reduced by the pan-caspase inhibitor z-VAD.fmk. Thus, our results show that the differential efficiency of the apoptotic machinery determines cell type-specific attenuation of growth in cells with [(3)H]-thymidine-labeled DNA. They also demonstrate that [(3)H]-thymidine-treated and serum-deprived VSMC employ common intermediates of the apoptotic machinery, including steps that are potentiated by E1A-adenoviral protein and inhibited by activation of cAMP signaling as well as by inversion of the intracellular [Na(+)](i)/[K(+)](i) ratio. |
---|---|
ISSN: | 1360-8185 1573-675X |
DOI: | 10.1023/A:1022931028235 |