Instability of Confined Water Films between Elastic Surfaces

We investigated the dynamics of nanometer thin water films at controlled ambient humidity adsorbed onto two atomically smooth mica sheets upon rapidly bringing the surfaces into contact. Using a surface forces apparatus (SFA) in imaging mode, we found that the water films break up into a distributio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2010-03, Vol.26 (5), p.3280-3285
Hauptverfasser: de Beer, Sissi, Mannetje, Dieter ‘t, Zantema, Sietske, Mugele, Frieder
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the dynamics of nanometer thin water films at controlled ambient humidity adsorbed onto two atomically smooth mica sheets upon rapidly bringing the surfaces into contact. Using a surface forces apparatus (SFA) in imaging mode, we found that the water films break up into a distribution of drops with a typical thickness of a few nanometers and a characteristic lateral size and spacing of several micrometers. Whereas the characteristic length is found to be independent of the ambient humidity, the characteristic time of the breakup decreases from ∼1 to 0.01 s with increasing humidity. The existence of characteristic length and time scales shows that this breakup is controlled by an instability rather than a conventional nucleation and growth mechanism for SFA experiments. These findings cannot be explained by a dispersion-driven instability mechanism. In contrast, a model involving the elastic energies for the deformation of both the mica sheets and the underlying glue layer correctly reproduces the scaling of the characteristic length and time with humidity.
ISSN:0743-7463
1520-5827
DOI:10.1021/la903051k