Theoretical Study of Atomic Structure and Elastic Properties of Branched Silicon Nanowires

The atomic structure and elastic properties of Y-shaped silicon nanowires of “fork”- and “bough”-types were theoretically studied, and effective Young moduli were calculated using Tersoff interatomic potential. The oscillation of fork Y-type branched nanowires with various branch lengths and diamete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2010-05, Vol.4 (5), p.2784-2790
Hauptverfasser: Sorokin, Pavel B, Kvashnin, Alexander G, Kvashnin, Dmitry G, Filicheva, Julia A, Avramov, Pavel V, Fedorov, Alexander S, Chernozatonskii, Leonid A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The atomic structure and elastic properties of Y-shaped silicon nanowires of “fork”- and “bough”-types were theoretically studied, and effective Young moduli were calculated using Tersoff interatomic potential. The oscillation of fork Y-type branched nanowires with various branch lengths and diameters was studied. In the final stages of the bending, the formation of new bonds between different parts of the wires was observed. It was found that the stiffness of the nanowires is comparable with the stiffness of Y-shaped carbon nanotubes.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn9018027