Biphasic role of TGF-beta1 in signal transduction and crosstalk
TGF-beta1 induces cell cycle activation in mouse embryonic fibroblasts by down regulation of p27(Kip1) but it can also induce delay of EGF-induced cell cycle activation in these cells under similar conditions. In an attempt to determine the basis for these responses, the study of early TGF-beta1-ind...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2003-07, Vol.196 (1), p.42-50 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TGF-beta1 induces cell cycle activation in mouse embryonic fibroblasts by down regulation of p27(Kip1) but it can also induce delay of EGF-induced cell cycle activation in these cells under similar conditions. In an attempt to determine the basis for these responses, the study of early TGF-beta1-induced signal transduction pathways in the presence and absence of EGF was undertaken. It is proposed that a likely target for the inhibition by TGF-beta1 of the early EGF-induced p42/p44 MAPK is at the c-Raf locus. The finding that the catalytic subunits of PKA are associated with Raf-1 within minutes following application of TGF-beta1 but not EGF in fibroblasts arrested in early G1 is suggestive of a role of PKA-Raf-1 interaction in TGF-beta1 induced delay of EGF-induced cell cycle kinetics. A model for TGF-beta1 induced translocation to the plasma membrane-associated Raf-1 is proposed. Reports that Rho-like GTPase activity is critical for the activation of TGF-beta1 downstream pathways raises the question as to whether Rho proteins are involved in these observed TGF-beta1-induced responses. Post-receptor signaling mechanisms for TGF-beta1 and cross-talk with PKA-mediated pathways are examined in an effort to explain the modulation by TGF-beta1 of mitogen-induced cell proliferation in mesenchymal cells. |
---|---|
ISSN: | 0021-9541 |