Splanchnic Metabolism of Dairy Cows During the Transition From Late Gestation Through Early Lactation

Blood flow and net nutrient fluxes for portal-drained viscera (PDV) and liver (total splanchnic tissues) were measured at 19 and 9 d prepartum and at 11, 21, 33, and 83 d in milk (DIM) in 5 multiparous Holstein-Friesian cows. Cows were fed a grass silage-based gestation ration initially and a corn s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dairy science 2003-04, Vol.86 (4), p.1201-1217
Hauptverfasser: Reynolds, C.K., Aikman, P.C., Lupoli, B., Humphries, D.J., Beever, D.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blood flow and net nutrient fluxes for portal-drained viscera (PDV) and liver (total splanchnic tissues) were measured at 19 and 9 d prepartum and at 11, 21, 33, and 83 d in milk (DIM) in 5 multiparous Holstein-Friesian cows. Cows were fed a grass silage-based gestation ration initially and a corn silage-based lactation ration peripartum and postpartum. Meals were fed at 8-h intervals and hourly (n = 8) measures of splanchnic metabolism were started before (0730h and 0830h) feeding at 0830h. Dry matter intakes (DMI) at 19 and 9 d prepartum were not different. Metabolism changes measured from 19 to 9 d prepartum were lower arterial insulin and acetate, higher arterial nonesterified fatty acids and increased net liver removal of glycerol. After calving, PDV and liver blood flow and oxygen consumption more than doubled as DMI and milk yield increased, but 85 and 93% of the respective increases in PDV and liver blood flow at 83 DIM had occurred by 11 DIM. Therefore, factors additional to DMI must also contribute to increased blood flow in early lactation. Most postpartum changes in net PDV and liver metabolism could be attributed to increases in DMI and digestion or increased milk yield and tissue energy loss. Glucose release was increasingly greater than calculated requirements as DIM increased, presumably as tissue energy balance increased. Potential contributions of lactate, alanine, and glycerol to liver glucose synthesis were greatest at 11 DIM but decreased by 83 DIM. Excluding alanine, there was no evidence of an increased contribution of amino acids to liver glucose synthesis is required in early lactation. Increased net liver removal of propionate (69%), lactate (20%), alanine (8%), and glycerol (4%) can account for increased liver glucose release in transition cows from 9 d before to 11 d after calving.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.s0022-0302(03)73704-7