Cytogenetics of the genus Arvicanthis (Rodentia, Muridae). 3. Comparative cytogenetics of A. neumanni and A. nairobae from Tanzania

The African rats of the genus Arvicanthis have been widely studied during recent years to clarify species boundaries and phylogenetic relationships. The wide chromosomal variability of the genus has been highlighted in several studies, with each accepted species characterised by its individual karyo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetica 2003-05, Vol.118 (1), p.33-39
Hauptverfasser: Castiglia, R, Corti, M, Tesha, P, Scanzani, A, Fadda, C, Capanna, E, Verheyen, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The African rats of the genus Arvicanthis have been widely studied during recent years to clarify species boundaries and phylogenetic relationships. The wide chromosomal variability of the genus has been highlighted in several studies, with each accepted species characterised by its individual karyotypes and others being revealed as cryptic species. In the present paper we report the karyotype and the C- and G-banding patterns of the two species A. nairobae and A. neumanni from seven localities of Tanzania, an area of the range poorly studied. The two karyotypes were compared to that of A. niloticus, which is considered to be primitive. The karyotype of A. neumanni is characterised by 2n = 53-54 and NFa = 62. This karyotypic variability depends on a widespread Robertsonian polymorphism. The karyotype of A. nairobae shows 2n = 62 and NFa = 78; it diverges from that of A. niloticus through one reciprocal translocation, five inversions and three heterochromatic additions. The comparison with the karyotypes of other species of the genus showed that A. neumanni belongs to the east African lineage (with A. abyssinicus, A. blicki, A. niloticus), while A. nairobae is closer to the central and the west African representatives which were all previously under the name of A. niloticus (ANI-2, ANI-3, ANI-4). The distribution of A. nairobae in east Africa opens new scenarios in the biogeographical pattern of evolution of the genus.
ISSN:0016-6707
DOI:10.1023/A:1022903112274